
A note on the motion
of Mars on the second
Strasbourg
astronomical clock

Denis Roegel
19 May 2023

Abstract
The astronomical clock erected in the 1570s in the Strasbourg cathedral by the
mathematician Conrad Dasypodius and the Habrecht clockmakers showed the
mean motions of the superior planets in a geocentric setting, but the motion of Mars
on the clock appears to have been less accurate than those of Jupiter and Saturn.
In fact, it is clear that something went wrong, that either a wheel was cut with the
wrong number of teeth, or that some calculation error was made. However, up to
now, no satisfactorily explanation has been given for this discrepancy. This note
endeavours to suggest a plausible solution and also relates some of the chosen
periods in the clock to the values given in the Prutenic tables.
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Introduction
Günther Oestmann has recently published an English updated translation of his
dissertation on the second astronomical clock of the cathedral of Strasbourg, designed
and constructed in the 16th century by the mathematician Conrad Dasypodius (1531?-
1601?), the clockmakers Isaac Habrecht (1544-1620) and his brother Josias (1552-
1575), and a few others (Oestmann (2020)). My purpose here is not to review this work,
but to have a closer look at one particular feature of the clock, namely the motion of
Mars.

I became interested in that question while preparing a new edition of Ungerer’s
seminal work on the astronomical clock of the cathedral of Strasbourg (Ungerer and
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2 The motion of Mars

Ungerer (1922)). It turns out, as a matter of fact, that the motion of Mars was much
more inaccurate on that clock than those of Jupiter and Saturn, and also much more
inaccurate than it could have been. The mechanisms of the 16th-century clock are
almost entirely kept in the Musée des arts décoratifs in Strasbourg, and the parts of
interest here are the celestial globe and the astrolabe.

The motion of the Sun
We need first to examine how the Sun moves on the clock, because the motion of
the Sun is later used to derive those of the planets. On the celestial globe, the motion
of the Sun was displayed with a period of TE = 536550/1469 days with respect to
the globe, that is about 365d 5h 57m 48s, which is close to the variable tropical
year derived from the Prutenic tables (Reinhold (1551)), based on Copernicus’s De
Revolutionibus. I will not consider here how Dasypodius may have come to TE , but
I merely recall that in Copernicus’s theory (Swerdlow and Neugebauer (1984)), the
precession is slowly variable (Swerdlow (1986); Morando and Savoie (1996)), and this
causes in turn the tropical year to be variable. Meeus and Savoie (Meeus and Savoie
(1992)) gave a value of 365 days 5 hours 55 minutes and 58 seconds for the tropical
year in the Prutenic tables, and it may refer to their computation for 1551. In any case,
this value is much less accurate than the value of the tropical year in the Alphonsine
tables, although the mean value of the Prutenic tropical year is close to that of the
Alphonsine tables (Swerdlow 1986, p. 110).

So, on the celestial globe, Dasypodius obviously approximated the tropical year from
the Prutenic tables, although he should in fact have used the sidereal year, the globe
representing the actual sky, not the coordinate system (mobile zodiac) linked to the
Earth. The sidereal year derived from the Prutenic tables is 365 days 6 hours 9 minutes
and 39 seconds and the difference between the two (tropical and sidereal) years is
quite large. We can also observe that in the Hypotyposes published by Dasypodius in
1568 (Peucer 1568, p. 312), Peucer gives the (variable) tropical year for 1559 as 365
days 5 hours 55 minutes 16 seconds 17 thirds. This work was cited by Oestmann in
2020 (Oestmann (2020)), but without relating it to the value of the tropical year used
on the clock. Looking back, it is in fact surprising to see that none of the authors who
wrote on the clock related the year used on the clock to the Prutenic tables. The first
to analyze the gears, Jean-Baptiste Schwilgué (1776-1856), the maker of the current
astronomical clock in Strasbourg cathedral, only gave the sidereal day, not the sidereal
or tropical year (Schwilgué c1845, vol. 2, p. 220). Surprisingly, the seminal book by
Ungerer published in 1922 doesn’t give any details of that clock (Ungerer and Ungerer
(1922)). Then, when Henri Bach (1909-1991) wrote on the globe in 1960 (Bach
(1960)), he gave the sidereal year as 365.248468105 days (which should have been
365.24846834. . .) and he suggested that Dasypodius’s target value was the sidereal
year from the Alphonsine tables. He also suggested that Dasypodius might have taken
as target the average between the tropical and sidereal year. In his articles published
in 1978-1979 (Bach (1978, 1979)), he also didn’t relate the year to the Prutenic
tables. Neither Poulle in 1983 (Poulle (1983)), nor Bach and Rieb in 1992 (Bach
et al. (1992)), gave any explicit value of the (tropical) year used on the clock. Poulle
moreover also tried to relate the indications of the clock to the Alphonsine tables, when
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in fact the Prutenic tables were more relevant, as already observed by Oestmann in
1993 (Oestmann (1993)). In 2005, Scheurenbrand (Scheurenbrand et al. 2005, p. 112)
also missed the link with the Prutenic tables, even though he gave the value 365.24847
days. And most recently, in 2020, Oestmann (Oestmann 2020, p. 140) still merely gave
the (tropical) year used by Dasypodius as 365.2485 days. He only compared this value
to the sidereal year.

The astrolabe dial and the planets
The astrolabe dial of the clock also showed the motion of the Sun and of the known
planets, as well as the rete for the stars, of course in a geocentric perspective. This rete,
however, should be understood as representing the mobile zodiac, and therefore the
motion of the Sun with respect to the rete should be that of the tropical year. In any
case, the astrolabe did display the same motions as on the globe, namely that the rete
rotated with respect to the Sun with the exact same speed as the celestial globe with
respect to the Sun, and so did the Sun in a fixed frame, making one turn in 24 hours. On
the astrolabe, all the planets had uniform motions. Mercury and Venus, however, did
not have any independent motion and were always moving with the Sun. Their actual
motion is an oscillation around the Sun, not taken into account in the clock which only
displayed mean motions.

The three other planets, namely Mars, Jupiter and Saturn, however had independent
motions and Dasypodius tried to have them move with their tropical periods.
Dasypodius could not do this with Mercury and Venus, because it would then have
caused these planets to be at times opposite the Sun, which does never take place.

In the sequel, I will consider the synodic (S) and tropical (T ) periods of the planets,
and subscript them with E (Earth), M (Mars), J (Jupiter) or S (Saturn). It is easy to
show that

Sx =
Tx · TE

Tx − TE

where x denotes one of Mars, Jupiter or Saturn. And we also have

Sx

TE
=

Tx

Tx − TE
=

1

1− TE

Tx

The ratios Sx

TE
are important here, because the revolutions of Mars, Jupiter and Saturn

are derived from that of the Sun in a mobile reference frame rotating with the Sun,
hence the synodic revolutions.

Let us now compare the synodic and tropical revolutions on the clock with the actual
ones:

synodic revolution tropical revolution
Planet clock real clock real
Mars 1083600

1469 ≈ 738 d. 780 d. 553719600
765349 ≈ 723 d. 687 d.

Jupiter 6438600
16159 ≈ 398 d. 399 d. 6438600

1469 ≈ 4383 d. 4331 d.
Saturn 16096500

42601 ≈ 378 d. 378 d. 16096500
1469 ≈ 10957 d. 10747 d.
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The equation for Sx given above can be used to relate the synodic and tropical
revolutions in this table. For instance, we have

SM =
1083600

1469
=

553719600
765349 × 536550

1469
553719600
765349 − 536550

1469

Some of these values were sometimes given incorrectly in earlier publications.
Schwilgué obtained 729 days instead of 723 for the tropical revolution (Schwilgué
c1845, vol. 2, p. 221), because he mistakenly thought that the 129 teeth wheel in
Mars’s gears had only 128 teeth. For the same reason, in 1979 (Bach (1979)), Bach
gave the value 732 days instead of 738 for Mars’s synodic revolution, and moreover
he compared it to a real tropical revolution of 686 days, which does not make sense.
When he examined the gears in 1947, he had actually counted 129 teeth for the above-
mentioned wheel (Poulle 1983, p. 42), but in 1979 he used Schwilgué’s value, probably
trusting it more than his own.

Now, as we can see in this table, the synodic revolutions have been well
approximated for Jupiter and Saturn, but the approximation for Mars is rather bad.
The synodic revolutions are also less sensitive to errors on the sidereal or tropical
revolutions, which explains that even with 1 or 2 % of error on the tropical revolutions
of Jupiter and Saturn, the displayed synodic revolutions are relatively more accurate.

How the ratios were chosen for Jupiter and Saturn
From the above results, there are two investigations which should be conducted. First,
can we find how Dasypodius (or Habrecht) obtained the revolutions of the planets
assuming that of the Sun? And second, why is the period of Mars so bad?

Unfortunately, Dasypodius himself is not very helpful, as his descriptions (Dasy-
podius (1578, 1580b,a)) of the clock do not enter into details. He does not even give
the revolution periods of the planets. It is however easy to reverse engineer some of the
work and to see that the tropical revolutions of Jupiter and Saturn were merely equated
to 12 and 30 tropical revolutions of the Sun:

12× 536550

1469
=

6438600

1469

30× 536550

1469
=

16096500

1469

Using the above relations between Tx and Sx, we also obtain the simple ratios
between the synodic revolutions and the tropical year of the Sun:

6438600

16159

/536550

1469
=

12

11
16096500

42601

/536550

1469
=

30

29

A note is in order here. In his book on the Strasbourg clock (Oestmann 2020, p. 168),
Oestmann writes that calculations should only use simple ratios, in order to have the
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designer’s goals become clear. He then goes on by setting, arbitrarily, the ratios of the
speeds of the idealized planets as 8/15 (Mars), 1/12 (Jupiter) and 1/30 (Saturn), derives
the ratios of the synodic periods, and then checks that the clock gears meet these ratios,
except for Mars. I think that this is the wrong way to tackle such a problem. We should
first consider the real motions of the planets, as given by the astronomical knowledge of
the time, such as given in the Prutenic tables. Then, we should identify what were the
goals in the construction and how these goals were met. We should not set right away
some ratio like 8/15, which may have no reality at all in a construction. In Oestmann’s
description, there is a confusion between the ratios he believes Dasypodius chose (or
should have taken) and those he actually chose. I do not, for instance, believe that
Dasypodius ever chose (and missed) the ratio 8/15 for Mars, as I explain below.

Now, in the above, there can be no doubt that the numbers 12 and 30 somehow lie
at the basis of the Jupiter and Saturn gears. (Incidentally, the astrolabe also displays
the lunar nodes, which involve the simple ratio 37/2.) This does however not mean that
Dasypodius approximated the ratios Tx/TE with 12 and 30. If Dasypodius had tried
to approximate the actual tropical years of Jupiter and Saturn, he would have come up
with more accurate ratios. I therefore believe that Dasypodius tried to approximate the
ratios Sx/TE with 12/11 and 30/29, and this is consistent with the fact that these ratios
are the ones needed for the gears, not the ratios Tx/TE . Moreover, Sx/TE is closer to
12/11 or 30/29 than Tx/TE is to 12 or 30, even relatively:

1− 10747/365.2484/30 = .019 . . .

378/365.2484− 30/29 = 0.0004 . . .

It may be the case that Dasypodius saw that the values of Tx/TE were close to 12
and 30, but these values were certainly not the actual targets.

How the motion of Mars may have been obtained
For Mars, things are not so simple. It is likely that Dasypodius started with the ratio
of the tropical revolution of Mars to that of the Sun, which is about 1.881. This value
could easily be derived from the mean daily motion in longitude of Mars in the Prutenic
tables, namely 0◦31′26′′30′′′ . . .:

360◦

0◦31′26′′30′′′ . . .

/536550

1469
≈ 1.881

Of course, at the time of Dasypodius, there weren’t yet any decimal fractions and
Dasypodius wouldn’t have written such a value 1.881, but he may have worked on
larger numbers, multiplying them for instance by 1000, or perhaps by 3600 if he was
working with sexagesimal values. Dividing by sexagesimal values could for instance
be achieved by converting the values to their smallest unit, such as seconds, or thirds,
etc., and then manipulating only integers. Eventually, Dasypodius would for instance
have obtained 1881/1000 for the above ratio.

But this ratio is not as close to an integer as those for Jupiter and Saturn,
and Dasypodius couldn’t merely settle for the value 2, for instance. Oestmann
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suggested (Oestmann 2020, p. 168) that Dasypodius may have targeted the simple ratio
15/8 = 1.875, and this would have led to SM/TE = 15/7 and a synodic revolution of
about 783 days on the clock, close to the real value. But on the clock, SM/TE =
1032/511 = 8

73 × 129
7 , and Oestmann did not come up with an explanation for that

ratio.
Now, we can also notice that the ratio of the tropical revolution of Mars to that of the

Sun on the clock is about 1.981 or more exactly 1032/521. And we can reformulate our
question and ask how Dasypodius (or Habrecht) came to obtain 1032/521? Or how did
Dasypodius arrive at 1032/511 in case he started with the ratio of the synodic period
to the tropical year of the Sun?

One might first consider that the key to the solution lies in the proximity of 1.881
and 1.981. If Dasypodius (or Habrecht) mistakenly read 1.981 (or 1981) for 1.881 (or
1881), the ratio 1032/521 might have been derived, then the ratio 1032/511 and then
the gear pairs

1032

511
=

8

73
× 129

7

which were used on the clock. The value 1083600/1469 given above for the synodic
revolution is then obtained by multiplying the ratio 536550/1469 by 1032/511.

But of course, we do not know how Dasypodius expressed his ratios. Perhaps he
didn’t use decimal representations, but sexagesimal ones, as in the astronomical tables
such as the Prutenic tables. As a matter of fact, using the convenient notation a; b, c, . . .
for a+ b/60 + c/602 + · · · , we have:

1.881 = 1 +
52

60
+

51

602
+ · · · = 1; 52, 51, . . .

1.981 = 1 +
58

60
+

51

602
+ · · · = 1; 58, 51, . . .

In these two expansions, the first can become the second by a mere error of one digit,
either in the decimal or in the sexagesimal expansion.

Either way, whether 1.881 was copied as 1.981 or 1; 52,51 was copied as 1; 58,51,
it could have led to the ratio 2377/1200 and this ratio may have been approximated by
1032/521, although we do not know by which process. There are moreover two paths
from 1; 58,51 to 1032/511. It may be that Dasypodius somehow obtained the ratio
1032/521, and from it derived that of 1032/511. Or, it may be that 1; 58,51 was used
to obtain the sexagesimal expansion for the ratio Sx/TE which is 2; 1,10, and then,
from this expansion the ratio 1032/511 could be obtained.

Had Dasypodius started with a tropical revolution of Mars of about 687 days, and
derived the ratio of the synodic revolution to that of the tropical year of the Sun, he
would have obtained about 2.131 = 2; 7,50 whereas 1032/511 = 2.019 . . . = 2; 1,10.
It does not seem clear how 1032/511 could be mistakenly derived from 2.131, either
in its decimal or in its sexagesimal expression. I therefore consider it more likely
that the error occurred on the ratio Tx/TE and that this then led to an incorrect ratio
Sx/TE which was then approximated with 1032/511. This could have been done by a
multiplication by 7, then by 73, given that 511 = 7 · 73.
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We have therefore a very plausible path by which the ratio 1032
511 could have been

obtained, and this path rests on a transcription error, either in an (unlikely) decimal
expansion of the ratio of tropical years, or in the sexagesimal expansion of this ratio. In
other words, 1; 52,51 may have been transcribed as 1; 58,51, perhaps 2; 1,10 was then
derived, and this value was recognized as being close to 1032/511 = 8

73 × 129
7 .

Now, whatever the real erroneous process, if the correct value of the ratio of the
tropical period of Mars to that of the Sun had been used, it could have been likewise
approximated by 980

521 . And the ratio of the synodic period of Mars to the tropical year
of the Sun would then have been 980

459 which could have been written as

980

459
=

7

51
× 140

9

giving two pairs of gears as replacements to the pairs

8

73
× 129

7

Comparison with earlier explanations
When Schwilgué examined Dasypodius’s gears in the 1830s or 1840s, he did not really
elaborate on the motion of Mars being less accurate than those of Jupiter and Saturn. In
fact, it is fair to say that he didn’t care too much for these old gears. And, as I mentioned
above, he erroneously attributed 128 teeth to the Mars wheel (Schwilgué c1845, vol. 2,
p. 215) which would have resulted in a synodic revolution of 732 days. Schwilgué’s
successors, the Ungerers, apparently didn’t do any work on Dasypodius’s astrolabe, and
we have to wait for Bach who analyzed the gears in 1947, probably because he was then
working on the Oslo astronomical clock which was completed in 1952. Around 1960,
J.-P. Rieb who was in touch with Bach built a partial small replica of Dasypodius’s
astrolabe work and he took the correct value 129 after examining the wheels (private
communication). Yet before 1980, Bach apparently still thought, following Schwilgué,
that the Mars wheel had 128 teeth (Bach (1979)), but at some point he accepted the
value 129. In 1983 (Poulle 1983, p. 42), Poulle tried to find a solution to the problem
of Mars and thought that Mars’s 129-teeth wheel actually had 130 teeth (synodic
revolution: 743 days) but should have had 136 teeth (synodic revolution: 778 days).
This is a reasonable analysis resulting in revolution values close to the theoretical ones.
When Bach and Rieb’s book was published in 1992 (Bach et al. (1992)), there was no
attempt to analyze the error on Mars. The authors only observed that the motion of Mars
was the least accurate of the clock. In his book published in 2020 (Oestmann (2020)),
Oestmann also made an attempt to derive Dasypodius’s gears, but he stopped short
from providing a solution. Earlier, in 1993 (Oestmann 1993, p. 119), he had suggested
that Mars’s 129-teeth wheel should instead have 136 teeth, perhaps following Poulle.
In 2000, based on a misunderstanding, he had instead suggested that the wheel should
have had 122 teeth (Oestmann 2000, p. 119), and this was repeated in his edition of
Dasypodius’ Heron mechanicus (Dasypodius 2008, p. 9). (I notified the latter error
to Oestmann in 2013. The value 122 would have resulted in a catastrophic synodic
revolution of 698 days.) And in 2005, Scheurenbrand (Scheurenbrand et al. 2005,
p. 113) suggested that Dasypodius should have taken the ratio 117/6 instead of 129/7
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(keeping 8/73), resulting in a synodic revolution of 781 days, or even should have
replaced the four gears by the pair 32/15 (synodic revolution: 779 days).

Conclusion

In fact, none of these suggestions are satisfactorily. If we assume that the clock has
only one incorrect wheel, and if 129 teeth are replaced by 136 teeth, then one obtains
a synodic revolution of 778 days (and not 780), and the tropical revolution will be
689 days (not 687). It is better than the current values with 129 teeth, but it does not
explain how the ratio 1032/521 was obtained. How could 136 have become 129? Even
Scheurenbrand’s suggestion for changing two gears is not as good as it seems. First, it
does not explain how the ratio 117/6 could have been found, and second it is still not as
good as the pair derived from 980/459 which could have been obtained. And the same
applies to the ratio 32/15.

It seems much more likely that the correction of Mars’s incorrect gearings is not
merely to replace one gear by another, or two gears by two others, or four gears
by two, but to replace four gears by four other gears. This seems to indicate that
during the construction of the gears the errors were not detected, perhaps because
of an excessive trust in the computations. But if the computations had been made
by Habrecht, wouldn’t they have been examined by Dasypodius? This leads me to
believe that Dasypodius made the computations, including the factoring, and that no
one proofchecked his computations, not even the Habrechts. The error then crept in the
gears, although it may have been detected at a later stage.

Of course, there is no written account of the computation errors, but the task of the
historian is not only limited to tangible testimonies such as manuscripts. A historian
should not only try to unravel the history, using the existing evidence, but he/she should
also suggest more or less plausible explanations. A historian is not merely a translator
or someone who finds something and makes it clearer to a larger audience, but he/she
is also someone who may suggest missing links. In the above case, it is clear that
something went wrong in the design of the motion of Mars, but none of the historians
up to now have been able to give a satisfactorily explanation. Occasionally, it has been
suggested to replace one wheel by another, but I believe that such a replacement is not
the best solution, and that it is necessary to move back earlier. The error on Mars is
not merely that of one or two wheels wrongly cut as has been claimed earlier, but it is
certainly that of a ratio wrongly computed or incorrectly copied, and consequently of
four wrong wheels. I have suggested what these four wheels could have been, had the
computation error not have taken place.
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