
D. Roegel: Astronomical clocks 1735-1796, 2025 (v.0.15, 8 September 2025)

CH. 11. HAHN’S GLOBE CLOCK IN ASCHAFFENBURG (1776/1777) [O:8.4]

Chapter 11 (Oechslin: 8.4)

Hahn’s globe clock in
Aschaffenburg (1776/1777)

This chapter is a work in progress and is not yet final-
ized. See the details in the introduction. It can be read
independently from the other chapters, but for the no-
tations, the general introduction should be read first.
Newer versions will be put online from time to time.

11.1 Introduction

The clock described here was constructed in 1776/1777 by Philipp Matthäus
Hahn (1739-1790)1 and is located in Schloss Johannisburg in Aschaffenburg.2

It has a base with four faces, three of which containing dials. One of the
three dials shows the hour on a 24-hour scale, the minutes on an internal dial,
the day of the month and of the week on another internal dial, and the year
on four small 0-9 dials.3 The second dial of the base shows a tellurium and
the third shows an orrery with the planets from Mercury to Saturn.

The upper part is a celestial globe showing the geocentric motion of the
planets, the Sun, the Moon and the lunar nodes.

1For biographical details on Hahn, I refer the reader to the chapter on the Ludwigsburg
Weltmaschine (Oechslin 8.1).

2See especially the 1989 exhibition catalogue [2, p. 405-407]. This clock is also cited by
Zinner [4, p. 353]. My photographs of the clock were taken on 24 July 2019.

3Oechslin’s plate seems to imply that the units are given left, then the tens, then the
hundreds, then the thousands, but this should be checked. A similar display of the year was
used by Alexius Johann in 1796 (Oechslin 9.1).
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Figure 11.1: General views of Hahn’s clock in Aschaffenburg. (photographs by
the author)
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Figure 11.2: The time dial of Hahn’s clock in Aschaffenburg. (photograph by
the author)

Figure 11.3: The orrery of Hahn’s clock in Aschaffenburg. (photograph by the
author)
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Figure 11.4: The tellurium of Hahn’s clock in Aschaffenburg. (photograph by
the author)

Figure 11.5: The side opposite the time dial on Hahn’s clock in Aschaffenburg.
(photograph by the author)
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Figure 11.6: The celestial globe of Hahn’s clock in Aschaffenburg. (photograph
by the author)

11.2 The base motion
The clockwork has a wheel making one turn in 24 hours on arbor 1. We have
(from the front)

T0
1 = 1 (11.1)

V0
1 = −1 (11.2)

because the motion is clockwise.
The motion of arbor 3 is then derived:

V0
3 = V0

1

(
−76

79

)
×
(
−57

58

)
= −2166

2291
(11.3)

Although Oechslin’s plan lacks that connexion, a 35-teeth wheel on arbor 3
must mesh with a 33-teeth wheel on arbor 4, which is the vertical arbor driving
the celestial globe. We then have

V0
4 = −V0

3 ×
(
−35

33

)
= −

(
−2166

2291

)
×
(
−35

33

)
= −25270

25201
(11.4)

This motion is clockwise as seen from above. It corresponds to a period of

P0
4 = −25201

25270
days = 86164.0838 . . . s (11.5)

Hence, the motion of arbor 4 is that of a sidereal day.
This ratio was also used by Hahn in the Gotha, Stuttgart and Nuremberg

machines, as well as in the Darmstadt globe clock.
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This velocity is then also used to drive the tellurium and the orrery.
I will first describe the gears of the orrery, then of the tellurium, and finally

of the celestial globe.

11.3 The orrery

The orrery shows the motions of the planets from Mercury to Saturn around
the Sun, as well as the Moon. Mercury, Mars, Jupiter and Saturn are given
an irregular motion in order to account for their elliptical orbits.

The input to the orrery is the motion of arbor 5 which is clockwise as seen
from the front of the orrery:

V0
5 = V0

4 = −25270

25201
(11.6)

11.3.1 The mean motions of the planets

The input motion is first used to produce the motion of tube 8, which is the
mean motion of Mercury:

V0
8 = V0

5 ×
(
−32

53

)
×

(
− 6

77

)
×

(
−20

83

)
(11.7)

= V0
5 ×

(
− 3840

338723

)
=

(
−25270

25201

)
×
(
− 3840

338723

)
=

13862400

1219451189
(11.8)

P0
8 =

1219451189

13862400
= 87.9682 . . . days (11.9)

This motion is counterclockwise as seen from the front. The same value is
given by Oechslin.

Mercury is actually given an irregular motion, in order to account for its
elliptic orbit. I will get back to it below, but will first deal with the mean
motions.

Venus (tube 12) only has a mean motion which is obtained from the mean
motion of Mercury:

V0
12 = V0

8 ×
(
−54

50

)
×
(
−29

80

)
(11.10)

= V0
8 ×

783

2000
=

13862400

1219451189
× 783

2000
=

935712

210250205
(11.11)

P0
12 =

210250205

935712
= 224.6954 . . . days (11.12)

The same value is given by Oechslin.
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The Earth (tube 14) also only has a mean motion which is obtained from
the (mean) motion of Venus:

V0
14 = V0

12 ×
(
−79

65

)
×
(
−41

81

)
= V0

12 ×
3239

5265
(11.13)

=
935712

210250205
× 3239

5265
=

473632

172990675
(11.14)

P0
14 =

172990675

473632
= 365.2427 . . . days (11.15)

This is an approximation of the tropical year. The same value is given by
Oechslin. This motion is also transferred to arbor 27 which is the input to the
tellurium.

The motion of the Earth is then used to obtain the mean motion of Mars.
The motion of Mars is used to obtain the motion of Jupiter, and the motion
of Jupiter is used to obtain the motions of Saturn and of the Moon.

So, first we compute the mean motion of Mars on tube 16. The train as
pictured on Oechslin’s drawing contains a 34-teeth wheel and we obtain:

V0
16? = V0

14 ×
(
−116

34

)
×
(
− 18

119

)
= V0

14 ×
1044

2023
(11.16)

=
473632

172990675
× 1044

2023
=

494471808

349960135525
(11.17)

P0
16? =

349960135525

494471808
= 707.7453 . . . days (11.18)

However, this value is not very accurate. We do in fact obtain a much
better value for the orbital period of Mars if we replace the 34-teeth wheel by
a 33-teeth one. And in fact, this is what Oechslin does in his calculations. We
now have:

V0
16 = V0

14 ×
(
−116

33

)
×
(
− 18

119

)
= V0

14 ×
696

1309
(11.19)

=
473632

172990675
× 696

1309
=

329647872

226444793575
(11.20)

P0
16 =

226444793575

329647872
= 686.9293 . . . days (11.21)

and Oechslin has the same value.
This assumption is also supported by the use of the same ratio 696

1309
in the

Weltmaschinen of Gotha and Stuttgart, as well as in the Stuttgart globe clock
(Oechslin 8.5).

Continuing with this assumption, from Mars, we obtain the mean motion
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of Jupiter on tube 19:

V0
19 = V0

16 ×
(
−119

31

)
×
(
− 5

121

)
= V0

16 ×
595

3751
(11.22)

=
329647872

226444793575
× 595

3751
=

329647872

1427553648235
(11.23)

P0
19 =

1427553648235

329647872
= 4330.5410 . . . days (11.24)

The same value is given by Oechslin.

The mean motion of Jupiter is then used to obtain the mean motion of
Saturn on tube 22:

V0
22 = V0

19 ×
(
−121

34

)
×
(
− 12

106

)
= V0

19 ×
363

901
(11.25)

=
329647872

1427553648235
× 363

901
=

988943616

10629965595535
(11.26)

P0
22 =

10629965595535

988943616
= 10748.8085 . . . days (11.27)

The same value is also given by Oechslin.

11.3.2 The motion of the Moon

The mean motion of Jupiter is also used to obtain the motion of tube 25:

V0
25 = V0

19 ×
(
−121

34

)
×
(
− 3

21

)
×
(
− 73

102

)
= V0

19 ×
(
− 8833

24276

)
(11.28)

=
329647872

1427553648235
×
(
− 8833

24276

)
= − 2005357888

23867281242805
(11.29)

P0
25 = −23867281242805

2005357888
= 11901.7564 . . . days (11.30)

The same value is given by Oechslin.

The motion of tube 25 is used to rotate the Moon around the Earth. We
can compute this motion precisely. We first compute the motion of the Moon
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with respect to the Earth. It is the motion of arbor 26. We have4

V14
26 = V14

25 ×
(
−72

6

)
= −

(
V0

25 − V0
14

)
× 12 = (V0

14 − V0
25)× 12 (11.31)

=

(
473632

172990675
+

2005357888

23867281242805

)
× 12 (11.32)

=
336758509216

119336406214025
× 12 (11.33)

=
4041102110592

119336406214025
(11.34)

P14
26 =

119336406214025

4041102110592
= 29.5306 . . . days (11.35)

As expected, we find an approximation of the synodic month. This value
is not given by Oechslin.

We can also compute the tropical motion of the Moon:

V0
26 = V14

26 +V0
14 =

4041102110592

119336406214025
+

473632

172990675
=

4367833830368

119336406214025
(11.36)

P0
26 =

119336406214025

4367833830368
= 27.3216 . . . days (11.37)

The same value is given by Oechslin.

11.3.3 The anomalies of the planets

Finally, we examine how the anomalies of the planets Mercury, Mars, Jupiter
and Saturn have been obtained. In each case, there is a central wheel fixed to
the frame. Oechslin doesn’t give the teeth numbers of these wheels, but they
are actually irrelevant, as they all mesh with identical wheels pivoting on the
mean motion wheels. It therefore suffices to consider the case of Mercury.

The Mercury satellite wheel on arbor 10 rotates as the tube 8 rotates with
the mean motion of Mercury. In the frame of tube 8, we have

V8
10 = V8

9 ×
(
−a

a

)
= −V8

9 = V9
8 = V0

8 (11.38)

P8
10 = P0

8 (11.39)

Therefore, on the Mercury tube 8, the eccentric arbor of Mercury oscillates
with the same period as the mean tropical motion of Mercury. This causes
the acceleration and slowing down of the motion to occur at the same places
in time, and therefore will account for the equation of center. Of course, in
this simple case, the tropical and anomalistic motions of Mercury have been
considered identical, which they are not exactly.

The same constructions are used for Mars, Jupiter and Saturn.
4Instead of 72, Oechslin gives the number of teeth of the upper wheel on tube 25 as

30/72. The teeth of this wheel are possibly uneven, but I am not sure that this is what
Oechslin meant.
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11.4 The tellurium
The tellurium shows the motion of the Earth around the Sun. The axis of
the Earth is tilted and always points to the same direction. The structure of
the tellurium is similar to that of the tellurium in a globe clock now kept in
Stuttgart (Oechslin 8.5) and constructed in 1770, except that the latter also
has the Moon revolving around the Earth.

Like in the Stuttgart globe clock mentioned above, this tellurium has two
inputs. The first input is the motion of arbor 29 which is that of a sidereal
day. It is counterclockwise as seen from the front of the tellurium:

V0
29 = −V0

4 =
25270

25201
(11.40)

This motion is used to produce the rotation of the Earth with respect to a
fixed frame.

The second input is that of arbor 27 stemming from the orrery. This motion
is that of the tropical year and it rotates clockwise as seen from the front of
the tellurium.

V0
27 = − 473632

172990675
(11.41)

I am only considering the motion of arbor 27 from the tellurium side, hence
the negative sign.

The motion of arbor 27 is used to produce the counterclockwise motion of
tube 28:

V0
28 = V0

27 ×
(
−80

80

)
= −V0

27 (11.42)

Hence, tube 28 makes one turn counterclockwise in a tropical year. This tube
supports the Earth frame.

The meridian of the Earth, which supports its axis, is fixed to a wheel on
tube 33. The motion of this wheel replicates the motion of the central arbor
31 which is fixed. Therefore, the meridian, and also the axis of the Earth,
always keep the same orientation with respect to the fixed frame, no matter
where the Earth is located.

Finally, the arbor 35 replicates the motion of tube 30:

V0
35 = V0

30 = V0
29 ×

(
−66

66

)
= −V0

29 = −25270

25201
(11.43)

And arbor 36, which is that of the Earth’s axis, has the velocity:

V0
36 = V0

35 ×
(
−30

30

)
= −V0

35 =
25270

25201
(11.44)

Consequently, the Earth rotates counterclockwise with the velocity of the
sidereal day, as it should.
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11.5 The celestial globe
The celestial globe on the top of the clock shows the geocentric motion of the
sky, the planets, the Sun and the Moon. The globe is rotating inside a fixed
frame representing the meridian. The vertical axis is the axis of the Earth, but
the Sun, the Moon and the planets approximately move in the ecliptic, whose
axis is tilted by 23.5◦ with respect to the equator. This axis rotates with the
celestial globe.

A comparison with the gears of the globes of the Weltmaschinen of Stuttgart
(Oechslin 8.1) (1769) and Gotha (Oechslin 8.3) (1780) shows that the struc-
tures of these three globes are very similar, and there are mainly small differ-
ences in teeth counts, but without altering the ratios.5 In fact, the structure of
the present globe is almost that of the Stuttgart machine, except for Mercury
where the ratio is different. Moreover, in the Gotha machine, the motion of
the lunar apsides and nodes is fraught with an error (either in the machine
itself, or in Oechslin’s account).

As mentioned earlier, the input to the globe is the motion of the vertical
arbor 4 which makes one turn clockwise (seen from above) in a sidereal day:

V0
4 = −25270

25201
(11.45)

The central axis 47 of the globe is tied to three fixed wheels which will be
used to obtain some of the motions displayed.

11.5.1 The motions of the Moon and the Sun

Within the celestial globe, all the motions are produced from the motion of
tube 39. The velocity of this tube in the globe reference frame 47 is:

V47
39 = V47

37 ×
(
−71

92

)
×
(
− 7

148

)
= V47

37 ×
497

13616
(11.46)

where the tube/wheel 37 is a fixed part on the meridian frame of the globe.
Now, since

V47
37 = V47

0 = −V0
47 = −V0

4 =
25270

25201
(11.47)

it follows that

V47
39 =

25270

25201
× 497

13616
=

6279595

171568408
(11.48)

P47
39 =

171568408

6279595
= 27.3215 . . . days (11.49)

5A photograph of the gears of the globe is shown in the 1989 exhibition catalogue [3,
p. 528].
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The tube 39 actually corresponds to the mean motion of the Moon and the
period of its rotation around the globe is one tropical month. The same value
is given by Oechslin, also in sidereal days.

This motion is used to obtain the mean motion of the Sun on tube 41:

V47
41 = V47

39 ×
(
−112

53

)
×
(
− 4

113

)
= V47

39 ×
448

5989
(11.50)

=
6279595

171568408
× 448

5989
=

351657320

128440399439
(11.51)

P47
41 =

128440399439

351657320
= 365.2430 . . . days (11.52)

The same value is given by Oechslin, also in sidereal days.
The actual motion of the Sun is on tube 68. This tube has the same motion

as another tube S ′ (erroneously numbered 41 by Oechslin), being connected
through axis 61 and the same gear ratios.

The motion of this tube S ′ is itself the same as that of an unnumbered
mobile frame containing a number of gears and which I am calling S.6 This
frame has an oscillating motion around the position of frame 41 which is the
mean Sun. This oscillation is produced by an excentric pin on a wheel on
arbor 49 located on frame 41. The oscillation period is the time it takes for
this wheel to rotate on frame 41:

V41
49 = V41

47 ×
(
−30

30

)
×
(
−30

30

)
= V41

47 = −V47
41 (11.53)

Therefore

P41
49 = −P47

41 (11.54)

(The negative sign is irrelevant here.)
The oscillation period is exactly that of the tropical year, so that the per-

ihelion (where the Sun is fastest) and aphelion are at fixed locations on the
celestial sphere. This oscillation approximates the equation of center. In real-
ity, the apsides are not fixed, but move at a rate of one turn in about 21000
years with respect to the zodiac. That would be the period that Hahn would
have had to implement.

Now, the mean motion of the Sun is used to obtain the apsidal precession
of the Moon on tube 43:

6Oechslin’s plate is slightly incorrect as it mistakenly links a 116-teeth wheel on tube S′

with the 113-teeth wheel on tube 41. See the Gotha plate which is better in that respect.
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V47
43 = V47

41 ×
(
−28

78

)
×
(
−23

73

)
(11.55)

= V47
41 ×

322

2847
(11.56)

=
351657320

128440399439
× 322

2847
=

4923202480

15898687704471
(11.57)

P47
43 =

15898687704471

4923202480
= 3229.3385 . . . days (11.58)

The same value is given by Oechslin, also in sidereal days.
The actual value is about 3233 days (8.85 years). It should be noted that

in the Gotha Weltmaschine, a ratio of
(
−28

81

)
is used instead of

(
−28

78

)
, and

this causes the motions of the lunar apsides and nodes to be wrong.
The motion of the apsides is then used to obtain the apparent motion of

the Moon, namely that of the mean Moon plus the equation of center. The
equation of center is computed based on the position of the perigee. Now,
whereas the equation of center for the Sun rested on a fixed wheel on axis 47,
because the perihelion/aphelion were considered fixed on the celestial sphere,
the equation of center for the Moon rests on the wheel corresponding to the
apsidal precession, because the perigee/apogee are fixed with respect to that
wheel. The period of the oscillation caused by the equation of center of the
Moon is however not the tropical month:

V39
44 = V39

43 ×
(
−48

48

)
= −V39

43 = V43
39 (11.59)

= V47
39 +V43

47 =
6279595

171568408
− 4923202480

15898687704471
(11.60)

=
106165514457065

2925358537622664
(11.61)

P39
44 =

2925358537622664

106165514457065
= 27.5546 . . . days (11.62)

This is the anomalistic month. This value is not given by Oechslin.

As far as the Moon is concerned, the mean motion of the Sun is also used
to obtain the precession of the lunar nodes on tube 46:

V47
46 = V47

41 ×
(
−28

78

)
×

(
−25

33

)
×
(
−17

39

)
(11.63)

= V47
41 ×

(
− 2975

55341

)
=

351657320

128440399439
×
(
− 2975

55341

)
(11.64)

= − 1046180527000

7108020145353699
(11.65)

This value is negative, because the nodes have a retrograde motion.

P47
46 = −7108020145353699

1046180527000
= −6794.2577 . . . days (11.66)
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The same value is given by Oechslin. This corresponds to about 18.6 tropical
years.

11.5.2 The motions of the planets

The motion of the true Sun is used to obtain the apparent motions of Mercury
and Venus.

11.5.2.1 Venus

I am first considering the motion of Venus, as it is the simplest. Hahn merely
has Venus oscillating around the position of the Sun with the period of a wheel
on arbor 59. The velocity of this wheel is

VS
59 = VS

47 ×
(
−31

20

)
×

(
−26

44

)
×

(
−28

41

)
= VS

47 ×
(
−2821

4510

)
(11.67)

Now, since

VS
47 ≈ V41

47 (11.68)

we have

VS
59 ≈ V41

47 ×
(
−2821

4510

)
≈

(
− 351657320

128440399439

)
×
(
−2821

4510

)
(11.69)

≈ 99202529972

57926620146989
(11.70)

and

PS
59 ≈

57926620146989

99202529972
= 583.9228 . . . days (11.71)

which is the synodic period of Venus. This value is not given by Oechslin. The
above value is an average, because it is based on the motion of the true Sun.
The oscillation of Venus makes it possible to show the retrogradations of this
planet.

From this period, we can obtain the tropical orbit period of Venus which
is7

tropical orbit period =
1

1
tropical year +

1
synodic period

(11.72)

=
1

1
P47
41
+ 1

PS
59

(11.73)

≈ 57926620146989

257799981292
= 224.6959 . . . days (11.74)

The same value is given by Oechslin, also in sidereal days.
7The derivation of this formula can for instance be found in section 22.4.3.1, in the

chapter on Klein’s Tychonic clock.
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11.5.2.2 Mercury

The motion of Mercury is more complex because Hahn both takes into account
the retrogradations of Mercury and the excentricity of its orbit (but not the
precession of the apsides). If we do not take the excentricity into account, the
position of Mercury is that of arbor 56 and it is also merely oscillating around
the true Sun.

For Mercury, Hahn did not use the same ratios as in Stuttgart and Gotha,
but the period obtained is very close.

The velocity of Mercury’s axis 56 around its average position (tube 54)
with respect the mean Sun is

VS
54 = VS

47 ×
(
−69

28

)
×

(
−55

43

)
×

(
−43

43

)
= VS

47 ×
(
−3795

1204

)
(11.75)

As before, since

VS
47 ≈ V41

47 (11.76)

we have

VS
54 ≈ V41

47 ×
(
−3795

1204

)
≈

(
− 351657320

128440399439

)
×
(
−3795

1204

)
(11.77)

≈ 188387850

21829791209
(11.78)

and

PS
54 ≈

21829791209

188387850
= 115.8768 . . . days (11.79)

which is the synodic period of Mercury. Like for Venus, the above value is an
average, because it is based on the motion of the true Sun. The oscillation of
Mercury makes it possible to show the retrogradations of this planet.

Again, we can also deduce the tropical orbit period of Mercury which is

5522937175877

62783390810
= 87.9681 . . . days (11.80)

The same value is given by Oechslin, also in sidereal days.
Hahn does however add a second oscillation on top of the first one, in that

the pin driving Mercury is excentered from arbor 56. Mercury rotates around
the axis 56.

Arbor 56 replicates tube 54 which replicates arbor 47. Consequently, the
crank has a fixed orientation with respect to the globe.
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11.5.2.3 Mars

The motions of Mars, Jupiter and Saturn are based on the true motion of
the Sun. The motion of the Sun is replicated in three 116-teeth wheels which
have the same motion as they are connected with identical gears to arbor 61.
The intermediate of these three 116-teeth is the one on tube 68 and is the one
carrying the actual Sun, as was already mentioned.

The mean motion of Mars is obtained first on tube 63:

V47
63 = V47

S′ ×
(
−116

22

)
×
(
−22

22

)
×
(
−12

32

)
×
(
− 32

119

)
(11.81)

≈ V47
S′ × 696

1309
=

351657320

128440399439
× 696

1309
=

1205682240

828219127417
(11.82)

P47
63 ≈

828219127417

1205682240
= 686.9298 . . . days (11.83)

This is Mars’ orbital period. The same value is given by Oechslin, also in
sidereal days. Like for Mercury and Venus, the above value is an average,
because it is based on the motion of the true Sun.

Hahn then takes the excentricity of the orbit into account, in that he adds
the equation of center. This is done exactly in the same way as the equation
of center for the Sun. There are two wheels of 48 teeth, one of them located
on the frame for the mean motion of Mars, the other fixed inside the celestial
globe (frame 47). We have

V63
64 = V63

47 ×
(
−48

48

)
= −V63

47 = V47
63 (11.84)

Therefore

P63
64 = P47

63 (11.85)

The oscillation period is exactly that of the tropical orbit period, so that the
perihelion (where the Sun is fastest) and aphelion are at fixed locations on
the celestial sphere. This oscillation approximates the equation of center. The
resulting true motion of Mars is on a frame that Oechslin doesn’t seem to
number, but that we will name m.

For the geocentric view of the motion of Mars, Hahn proceeds as for Venus,
where he corrected the position of Venus using the elongation with the true
Sun S. In the case of Mars, the correction is done with respect to S ′, and we
have

VS′
66 = Vm

66 +VS′
m = Vm

S′ ×
(
−60

60

)
×

(
−60

60

)
+VS′

m (11.86)

= Vm
S′ +VS′

m = 0 (11.87)

We could also have seen immediately that the motion of arbor 66 replicates
that of S ′, and therefore that VS′

66 = 0.
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The synodic period of Mars corresponds to the velocity

Vm
S′ ≈ Vm

41 ≈ V47
41 − V47

m ≈ V47
41 − V47

63 (11.88)

≈ 351657320

128440399439
− 1205682240

828219127417
(11.89)

≈ 30795133880

24018354695093
(11.90)

and therefore

Pm
S′ ≈ 24018354695093

30795133880
= 779.9399 . . . days (11.91)

This value is not given by Oechslin.

11.5.2.4 Jupiter

The motion of Jupiter is obtained in a similar way as that of Mars. The mean
motion of Jupiter is obtained first on tube 72, from the mean motion of Mars:

V47
72 = V47

63 ×
(
−119

31

)
×
(
−31

31

)
×
(
− 5

34

)
×
(
− 34

121

)
(11.92)

= V47
63 ×

595

3751
≈ 1205682240

828219127417
× 595

3751
(11.93)

≈ 42198878400

182744114525951
(11.94)

P47
72 ≈

182744114525951

42198878400
= 4330.5443 . . . days (11.95)

This is Jupiter’s orbital period. The same value is given by Oechslin. Like for
Mercury, Venus and Mars, the above value is an average, because it is based
on the motion of the true Sun.

Like for Mars, Hahn then takes the excentricity of the orbit into account,
in that he adds the equation of center. We have

V72
73 = V72

47 ×
(
−60

60

)
= −V72

47 = V47
72 (11.96)

Therefore

P72
73 = P47

72 (11.97)

The oscillation period is exactly that of the tropical year, so that the perihelion
(where the Sun is fastest) and aphelion are at fixed locations on the celestial
sphere. This oscillation approximates the equation of center. The resulting
true motion of Jupiter is on a frame that Oechslin doesn’t seem to number,
but that we will name j. We have

VS
75 = Vj

75 +VS
j = Vj

S ×
(
−60

60

)
×

(
−60

60

)
+VS

j (11.98)

= Vj
S +VS

j = 0 (11.99)
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In other words

V47
75 = VS

75 +V47
S = V47

S (11.100)

We could likewise compute the synodic period of Jupiter, as we did for
Mars.

11.5.2.5 Saturn

The motion of Saturn is also obtained similarly. The mean motion of Saturn
is obtained first on tube 78, from the mean motion of Jupiter:

V47
78 = V47

72 ×
(
−121

34

)
×
(
− 12

106

)
(11.101)

= V47
72 ×

363

901
≈ 42198878400

182744114525951
× 363

901
(11.102)

≈ 126596635200

1360764026346131
(11.103)

P47
72 ≈

1360764026346131

126596635200
= 10748.8166 . . . days (11.104)

This is Saturn’s orbital period. The same value is given by Oechslin. Like for
Mercury, Venus, Mars and Jupiter, the above value is an average, because it
is based on the motion of the true Sun.

Like for Mars and Jupiter, Hahn then takes the excentricity of the orbit
into account, in that he adds the equation of center. We have

V78
79 = V78

47 ×
(
−60

60

)
= −V78

47 = V47
78 (11.105)

Therefore

P78
79 = P47

78 (11.106)

The oscillation period is exactly that of the tropical year, so that the perihelion
(where the Sun is fastest) and aphelion are at fixed locations on the celestial
sphere. This oscillation approximates the equation of center. The resulting
true motion of Saturn is on a frame that Oechslin doesn’t seem to number,
but that we will name s. We have

VS
81 = Vs

81 +VS
s = Vs

S ×
(
−48

48

)
×
(
−48

48

)
+VS

s (11.107)

= Vs
S +VS

s = 0 (11.108)

In other words

V47
81 = VS

81 +V47
S = V47

S (11.109)

We could likewise compute the synodic period of Saturn, as we did for
Mars.
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