
How to measure the corrections of the eyes
without an ophtalmologist or an optician∗

Denis Roegel

12 October 2025

When we need new glasses, we usually go to the ophtalmologist and get
a prescription. Our eyes are then measured and the appropriate glasses are
defined, depending on our sight. This usually involves elaborate machinery,
testing various lenses, and so on, often conducted by an optometrist.

It is of course important to get one’s eyes checked, especially for diseases
such as ARMD (Age-Related Macular Degeneration) and glaucoma, but for
the purely optical investigation, it is in fact possible to find the necessary
corrections of one’s eyes without an ophtalmologist or an optician. One way
to do it is to have a set of glasses with varying vergences, and to find which
one is most appropriate for each eye at a given distance.

Another way is to measure the basic features of our crystalline lenses
using our capacities to distinguish between a sharp and blurred image. This
is what I am showing here. I am however restricting myself to the correction
of myopia and hypermetropia, and in cases where there is already (still) a
range of sharp visibility. I am giving hints at further developments at the
end of this note.

1 Basic optics
Figure 1 illustrates a lens centered at O, with A′ being an object, and A its
image, or conversely. We have the following conjugation relation, where f is
the focal distance of the lens:

1

OA′
− 1

OA
=

1

f
(1)

f > 0 if the lens is convergent (figure 1), and f < 0 if it is divergent (figure 2).
∗This work was done in 2014, but was only made public in 2025.
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This relation is valid for thin lenses and with the paraxial approximation.
It follows from the above relation that if O and A are fixed, a decrease of f
leads to a decrease of OA′.

A A′
O

Figure 1: A convergent lens (f > 0).

A A′
O

Figure 2: A divergent lens (f < 0). When the incoming rays are parallel, the
outcoming rays virtually converge at the right of the lens.

2 The normal eye
The human eye (figure 3) is made of a number of parts, and for my purpose
I only consider two: the crystalline lens and the retina.1 The light goes
through the crystalline lens and the rays are concentrated on the retina. In
figures 1 and 2, the lens at O will represent the crystalline lens, and the plane
at A will represent the retina.

I call the distance between the center of the crystalline lens and the retina
d and I will assume that it is constant.2 The crystalline lens is not a rigid lens,

1For a comprehensive treatment of the physiology of the eye, see for instance Adler’s
textbook [3].

2This is of course a much simplified model, where the retina is assumed to be a plane,
and where d is constant. The actual retina is not flat and different persons may have eyes
with different values of d.
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Figure 3: The anatomy of the eye
(source: Wikimedia/Schematic_diagram_of_the_human_eye_en.svg).

but a lens whose curvature depends on muscles on its periphery. When the
lens is taut, the curvature of its surface is smallest (the radius of curvature
is greatest).

For a normal eye, when the crystalline lens is taut, we have a clear vision
at infinity. The focal distance of the taut lens is therefore f0 = d. This
corresponds to figure 4, with a vision at infinity.

When the crystalline lens is contracted, it becomes less taut and its curva-
ture increases. The focal distance therefore decreases, and for a same distance
OA the viewing distance OA′ is made smaller. The closest distance that the
eye can accomodate is called the punctum proximum (PP) (figure 5).

With rays coming from a far distance, if the eye contracts, the rays will
converge before reaching the retina, thus between the retina and the lens.
Contracting the eye will always move the convergence point (A) towards the
right. (This corresponds to fixing a closer point than the far distance.)

On the other hand, if we try to fix a point closer than the punctum
proximum, the convergence point will also be moved to the left, after the
retina, and the sight will be blurred.

In all our experiments, I assume that the distance between the crystalline
lens and the retina remains constant.
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Figure 4: The normal eye looking at a great distance. The eye is relaxed and
the crystalline lens is taut. The red line at the left represents the retina.

PP

Figure 5: The normal eye looking at the punctum proximum. If the lens had
the same focal distance as in figure 4, the image would be left of the retina.
But here, the eye is contracted and the crystalline lens is not taut. The focal
distance of the crystalline lens is therefore smallest.

3 The defect eye
In the defect eye, the focal distance of the taut crystalline lens is too large
or too small, compared to the distance between the crystalline lens and the
retina. Of course, we could also say that the latter is too small or too large
with respect to the former. In any case, when the focal distance is too small,
the eye can not see clearly at an infinite distance and in fact, it can not
see clearly beyond a certain distance. This is what is called myopia. When
the object gets closer, its image comes closer to the retina, until we reach
the punctum remotum (PR). This is the greatest distance where we can see
clearly. This is shown in figure 6. In that figure, the crystalline lens is taut.
When the object continues to come closer, the image goes beyond the retina,
so that we contract the eye, change its focal distance, in order to bring the
image back on the retina. This can be done only up to the punctum proximum
(PP).

On the other hand, when the focal distance of the taut crystalline lens
is too large, the eye can usually accomodate for an infinite distance (punc-
tum remotum = ∞) but the closest sharp distance is further away than the
average punctum proximum. This condition is called hypermetropia.

The interval between the punctum proximum and the punctum remotum
is the interval of distances where the eye can see clearly, and it does also

4



correspond to a range of focal distances for the crystalline lens. The ideal
principle of corrective glasses is to transform this range [pp, pr ] so that it
covers the range [npp,∞], where npp is the normal punctum proximum, that
is, about 25 cm. This transformation is done with glasses and results in a
function F . The new range is [F (pp), F (pr)].

Unfortunately, after a certain age, the function F can not be such that
F (pp) ≤ npp and F (pr) = ∞, and two functions F1 and F2 are introduced,
one such that F1(pp) = npp and the other such that F2(pr) = ∞.

PR

Figure 6: Punctum remotum too close (myopia). The normal punctum re-
motum should be at infinity.

Equation (1) can be used to compute the range [fp, fr] of focal distances
permitted by an eye, hence the elasticity of the crystalline lens. In equa-
tion (1), AO = d, which I assume to be about 17 mm. We then have

f = f1(OA
′) =

d×OA′

d+OA′
(2)

The measure of the extreme values of OA′ (pp and pr) then gives the
extreme values of the focal distance:

We obtain fp = f1(pp) and fr = f1(pr).
For instance, if OA′ = pp = 50 cm, fp = 1.64 cm. If OA′ = pr = 200 cm,

fr = 1.69 cm.

4 The corrected eye
Figure 7 shows how the punctum remotum, which was too close (myopia),
was removed further using a divergent lens (in green). The purpose is of
course to remove the punctum remotum to an infinite distance.

Figure 8 corresponds to a too distant punctum proximum (hypermetropia)
which is brought closer using a convergent lens (in green). The purpose is to
bring the punctum proximum back to about 25 cm.

Correcting the vision amounts to find the appropriate convergent or di-
vergent lens to put in front of the crystalline lens.
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pr1 pr2

PR moved

Figure 7: Punctum remotum too close, corrected with a divergent lens.

I assume that we know in both cases the (extreme) focal distances of the
eye.

pp1pp2

PP moved

Figure 8: Punctum proximum too distant, corrected with a convergent lens.

Figure 9 shows the general problem. We have two lenses, one is the
crystalline lens at O and I will consider the two extreme focal distances
measured earlier. The second lens is the corrective lens, located at O′. The
two lenses are at a distance e which is a parameter. The focal distance of
the corrective lens will be computed in order to put A′′ either at the desired
punctum proximum (when the crystalline lens is not taut) or at the desired
punctum remotum (when the crystalline lens is taut).

We have the two conjugation relations (valid for thin lenses):

1

OA′
− 1

OA
=

1

f1

1

O′A′′
− 1

O′A′
=

1

f2
(3)

as well as
OA′ + A′O′ = e (4)

f1 is variable (f1p,f1r) and f2 is fixed.
We want to compute f2. We can express OA′ as a function of f1 and f2
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Figure 9:

as a function of OA′ and O ′A′′:

OA′ =
f1 ·OA

f1 +OA
(5)

f2 =
O′A′ ·O′A′′

O′A′ −O′A′′
(6)

=
O′A′ ·O′A′′

O′A′ + A′′O′
(7)

=
(OA′ − e) ·O′A′′

OA′ − e+ A′′O′
(8)

Setting p = O′A′′ and AO = d, we have

OA′ = − f1 · d
f1 − d

(9)

and

f2(f1, p) =

(
f1·d
f1−d

+ e
)
· p

f1·d
f1−d

+ e+ p
(10)

=
[f1 · d− e(d− f1)] · p
(p+ e)(f1 − d) + f1 · d

(11)

The latter equation will be used to compute the focal distance of the
corrective lens, given the focal distance f1 of the crystalline lens, the distance
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d between the crystalline lens and the retina, the distance e between the two
lenses and the distance p to the desired punctum proximum or punctum
remotum.

In summary, f1 is a function of the actual punctum proximum or punctum
remotum:

f1p = f1(pp) f1r = f1(pr) (12)

Hence

f2p = f2(f1(pp), 25 cm) (13)
f2r = f2(f1(pr),∞) (14)

Now, f2 being given, we can again compute the range of clearness from
the two extreme values of f1:

O′A′′ =
1

1
f2

+ 1
O′A′

=
O′A′ · f2
O′A′ + f2

=

(
OA′ − e

)
f2

OA′ − e+ f2
(15)

OA′ =
OA · f1
OA+ f1

=
−df1
f1 − d

(16)

Therefore

O′A′′ = −

(
e+ df1

f1−d

)
f2

f2 − e− df1
f1−d

= − [e(f1 − d) + df1] f2
f2(f1 − d)− e(f1 − d)− df1

(17)

Replacing f1 by f1p and f1r, we obtain:

O′A′′
p = − [e(f1p − d) + df1p] f2

f2(f1p − d)− e(f1p − d)− df1p
(18)

O′A′′
r = − [e(f1r − d) + df1r] f2

f2(f1r − d)− e(f1r − d)− df1r
(19)

and we therefore have the range of clearness resulting from wearing the eye-
glasses of focal length f2.
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5 Measuring the PP and PR
For each eye, we can usually measure the punctum proximum and the punc-
tum remotum. We can take a book or some document with large letters, and
we can measure with a ruler the approximate closest and farthest distance
for which the text is sharp. This is not always possible, either because the
eye has no range of sharp sight, or because of important astigmatism. In the
other cases, the measurements should be possible and approximate ranges
suffice for our purposes.

Let us consider two examples. In each case, we take e = 3 cm, d = 1.7 cm,
we compute f2 with a desired punctum proximum of 25 cm (p = 25 cm− e),
and a desired punctum remotum of 1000 cm (p = 1000 cm− e). We therefore
obtain two values of f2 in each example.

Example 1: PP = 29 cm, PR = 60 cm In this case, we find f1p ≈ 1.606
(punctum proximum) and f1r ≈ 1.653 (punctum remotum). Then, we
compute two lenses:

• f2p = 143 cm (0.7 dioptries) which results in a vision range from
25 cm to 44 cm; this is the glass for near-vision;

• f2r = −60 cm (−1.65 dioptries) which results in a vision range
from 49 cm to 10m; this is the glass for far-vision.

There is a slight gap between the two ranges, but it doesn’t require an
additional glass.

Example 2: PP = 46 cm, PR > 3m In this case, we find f1p ≈ 1.64
(punctum proximum) and f1r ≈ 1.7 (punctum remotum). Then, we
compute two lenses:

• f2p = 45 cm (2.2 dioptries) which results in a vision range from
25 cm to 48 cm; this is the glass for near-vision;

• f2r = 1.3m (0.08 dioptries) which results in a vision range from
45 cm to 10m; this is the glass for far-vision.

Since these two ranges overlap, there is no need for an additional glass.

The features of the lenses then make it possible to order glasses online or
elsewhere. This is what I have been doing for more than ten years. When
ordering glasses, one should also give the pupillary distance which can easily
be measured.
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However, the above calculations have assumed a distance of 3 cm between
the crystalline lens and the glasses, and this may need to be adapted. I have
also assumed that the distance between the crystalline lens and the retina is
17mm.

6 Special cases

6.1 The case of no clear vision

It may happen that a person has no clear vision, whatever the distance.
This happens if the taut crystalline lens is not enough convergent, hence if
its focal distance is too large. In that case, the eye cannot be sufficiently
contracted for the rays to reach the retina at infinity, and also not at a closer
distance. We can then not directly measure the punctum proximum and
punctum remotum.

What can then be done is to wear correcting glasses which allow a clear
vision in some range (figure 10). Such correcting glasses can be found in
various shops and their refracting power is given in dioptries. For instance, a
glass of 2 dioptries corresponds to a focal distance of 0.5 meters. It matters
little which refracting power is chosen, as long as it is strong enough to
have some clear vision. One can then measure the punctum proximum and
punctum remotum. Using these measures, we can then compute the range
of focal distances of the crystalline lens, and then return to the formulæ of
section 4. I might detail this in a separate article.

retina

crystalline
α

Figure 10: An eye with no clear vision, corrected with a glass α.
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6.2 Astigmatism

It is also possible to measure the required correction for astigmatism, and
this was first described by Airy [1, 4, 2]. This might also be detailed in a
separate article.
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